Exercise 30

Differentiate f and find the domain of f.

$$
f(x)=\ln \ln \ln x
$$

Solution

Recognize that only the logarithm of a positive number can be taken.

$$
\begin{aligned}
& \ln \ln x>0 \text { and } \ln x>0 \text { and } x>0 \\
& \ln x>e^{0} \quad \text { and } \quad x>e^{0} \quad \text { and } \quad x>0 \\
& \ln x>1 \quad \text { and } \quad x>1 \quad \text { and } \quad x>0 \\
& x>e^{1} \quad \text { and } \quad x>1 \quad \text { and } \quad x>0 \\
& x>e \quad \text { and } \quad x>1 \text { and } x>0
\end{aligned}
$$

Therefore, the domain of the function is

$$
(e, \infty)
$$

Take the derivative of the function with respect to x by using the chain rule repeatedly.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\{\ln [\ln (\ln x)]\} \\
& =\frac{1}{\ln (\ln x)} \cdot \frac{d}{d x}[\ln (\ln x)] \\
& =\frac{1}{\ln (\ln x)} \cdot\left[\frac{1}{\ln x} \cdot \frac{d}{d x}(\ln x)\right] \\
& =\frac{1}{\ln (\ln x)} \cdot\left[\frac{1}{\ln x} \cdot\left(\frac{1}{x}\right)\right] \\
& =\frac{1}{x(\ln x) \ln (\ln x)}
\end{aligned}
$$

